Roll	
PHYS	
Q.PA	PER – I (Objective Type) GROUP – I Maximum Marks : 17
Nr.	PAPER CODE = 6475
Note:	Four possible answers A, B, C and D to each question are given. The choice which you think is correct,
1-	Today in zero mark in that duestion
	Two S.H.M having displacements are $x_1 = a \sin \omega t$ and $x_2 = b \cos \omega t$. The path difference between them will be:
	(A) Zero (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{2}$ (D) π
2	4 2
	A particle of 1 Kg moving with initial velocity $5 ms^{-1}$ is acting upon by a constant force 10N.
	Arter 5 seconds its velocity becomes:
	(A) 50 ms^{-1} (B) 55 ms^{-1} (C) 5 ms^{-1} (D) 10 ms^{-1}
3	(A) $50 ms^{-1}$ (B) $55 ms^{-1}$ (C) $5 ms^{-1}$ (D) $10 ms^{-1}$ Dolphins detect small differences in the shape, size and thickness of objects through:
	(A) Beats (D) Doding
4	(A) Beats (B) Radio waves (C) Echolocation (D) Both A and B The ratio of dimensions of torque to angular momentum is:
	/ A S
5	(A) 1: T (B) M: T (C) T: I (D) L: T Potential energy associated to the molecules of an ideal gas is considered to be:
6	(A) 100 J (B) Low (C) Zero (D) High
	A particle moves in a circle of radius r. In half the period of revolution, its displacement and distance covered are:
7	(A) $2r, \pi r$ (B) $2r, 2\pi r$ (C) $\sqrt{2}r, \pi r$ (D) $r, \pi r$ The magnitude of $-\hat{i}.(\hat{k}\times\hat{j})$ is equal to
,	The magnitude of $-i \cdot (k \times j)$ is equal to
	(A) 0 (B) $-2\hat{i}$ (C) (C)
8	The percentage uncertainty in mass and radius of earth is 2% and 5% respectively. The total
	percentage uncertainty in the volume of earth is:
	(A) 7% (B) 15% (C) 9%
9	The frequency of heart of normal human being is:
	(A) 12 Hz
10	The magnifying power of a magnifying glass is 3. Its focal length will be:
	(A) 15cm (B) 20cm
11	A flywheel gains an angular speed of 540 rev / min in 9 second. Its angular acceleration is:
	$(\Lambda) 0 \text{ ared } a^{-2}$ (D) (1 = 2)
12	(A) $9 \pi \text{ rad s}^{-2}$ (B) $6 \pi \text{ rad s}^{-2}$ (C) $12 \pi \text{ rad s}^{-2}$ (D) $2 \pi \text{ rad s}^{-2}$ The horizontal range of a projectile is:
	(4) 5
ĺ	(A) Equal to height at 30° (B) Double of height at 45°
13	(C) One fourth of the height at 90° (D) Four times of height at 45°
13	The efficiency of diesel engine is:
14	(A) 25% to 35% (B) 35% to 40 % (C) 45% to 50% (D) 20% to 25%
14	A mass is lifted to a height in 10 seconds. Now if the same mass is lifted to the same height in
T I	20 seconds then work done in two cases are in the ratio:
	(A) 1:2 (B) 2:1 (C) 1:1 (D) 4:1
15	Which of the vector can not be represented on graph:
1	(A) Unit vector (B) Position vector (C) Negative vector (D) Null vector
	Energy cannot flow away in the:
	(A) Transverse waves (B) Stationary waves
1	(C) Longitudinal waves (D) Sound waves
	The direction in which light energy is carried called a:
	(A) Pay (D) Want Control (C) 7
	(c) Locas (D) Spherical wave
	41-224-I-(Objective Type) - 19500 (6475)

(To be filled in by the candidate) (Academic Sessions 2020 – 2022 to 2023 – 2025) . INO Time Allowed: 2.40 hours **AHYSICS** 224-1st Annual-(INTER PART – I) GROUP - I Maximum Marks: 68 PAPER – I (Essay Type) 1 HR-1-24 SECTION-I 2. Write short answers to any EIGHT (8) questions: (i) Write down dimensions of : (a) Pressure. (b) Density. (ii) Does a dimensional analysis give any information on constant of proportionality that may appear in an algebraic expression? (iii) Name two major types of errors. (iv) Write down factors of prefixes atto and tera. (v) Can magnitude of a vector have a negative value? (vi) If $\overline{A} - \overline{B} = \overline{O}$, what can you say about the components of the two vectors? (vii) Can you add zero to a null vector? (viii) Motion with constant velocity is a special case of motion with constant acceleration. Is this statement true? Discuss. (ix) An object is thrown vertically upward. Discuss sign of acceleration due to gravity relative to velocity, while the object is in air. (x) How impulse is equal to change in momentum? (xi) An object has 1J of potential energy. Explain what does it mean? (xii) Prove that $P = \overline{F} \cdot \overline{v}$ where P, \overline{F} and \overline{v} are power, force and velocity. 3. Write short answers to any EIGHT (8) questions: (i) A wheel covers 200 m distance between two points. If its radius is 0.2 m, find the number of revolution completed by the wheel. (ii) Describe what should be the minimum velocity for a satellite, to orbit close to the earth around it. (iii) State the direction of the following vectors in simple situations, angular momentum and angular velocity. (iv) When mud flies off the tyre of a moving bicycle, in what direction does it fly? Explain. (v) A person is standing near a fast moving train. Is there any danger that he will fall towards it? (vi) Explain the working of a carburetor of a motorcar using Bernoulli's principle. (vii) Time period of a simple pendulum is 2.0 s and amplitude 20 cm, find its maximum speed. (viii) What are the conditions of constructive and destructive interference of two sound waves from coherent sources? (ix) Can we realize an ideal simple pendulum? (x) What is the total distance travelled by an object moving with SHM in a time equal, to its period, if its amplitude is A? (ii) antinode. (xi) Explain the terms: (i) crest. (xii) Why does sound travel faster in solids than in gases? (Turn Over)

16

16

4	. W	rite short answers to any SIX (6) questions :	12
	(i	Which principle is helpful to determine the shape and location of new wavefront? Explain briefly.	
	(ii	Explain whether the Young's experiment is an experiment for studying interference or diffraction effects of light.	
	(iii) What are different methods to get polarized light?	
	(iv)	What is multimode step index fibre? Explain in short.	
	(v)	Draw the ray diagram of compound microscope.	
	(vi)	Describe in short the construction and working of collimator.	
	(vii)	What will be efficiency of an engine if it performs 100 J of work and rejects 400 J of heat energy to the cold reservoir?	
	(viii)	Why the efficiency of real heat engine is always less than one?	
	(ix)	Give an example of a process in which no heat is transferred to or from the system but temperature of system changes.	
		SECTION – II	
N	ote :	Attempt any THREE questions.	
5.	(a)	Find resultant of \overline{A} and \overline{B} using addition of vectors by rectangular components.	5
		A football is thrown upward at an angle of 30° with respect to horizontal. To throw a 40 m pass what must be the initial speed of the ball?	3
6.	(a)	How would you describe the analytical approach of formula of absolute P.E., also derive the formula with diagrammatic explanation.	5
	(b)	The frequency of the note emitted by a stretched string is 300 Hz. What will be the frequency of this note when the tension is increased by one third without changing the length of the wire?	3
7.	(a)	Define angular momentum and explain orbital and spin angular momentum.	5
	(b)	A block of mass 4.0 kg is dropped from height of 0.80 m on to a spring of spring constant $k = 1960 \text{ Nm}^{-1}$. Find the maximum distance through which the spring will be compressed?	3
8.	(a)	Define pressure of gas. Prove that pressure exerted by the gas is directly proportional to the average translational kinetic energy of the gas molecules.	5
	(b)	How large must a heating duct be if air moving along it can replenish the air in a room of 300 m ³ volume every 15 min.? Assume the air's density remains constant.	3
9.	(a)	Explain Young's Double slit experiment to study the phenomenon of interference of light.	5
	(b)	An astronomical telescope having magnifying power of 5 consist of two thin lenses 24 cm apart. Find the focal lengths of the lenses.	3
		41-224-I-(Essay Type) -78	

Ų.PAI	PER – I (Objective Type) Four possible answers A, B, of fill that circle in front of that	GROUP - PAPER CODE: C and D to each questiat question with Marke	RPART – I) Tim - II Max = 6474 fon are given. The choice of the property of	2020 – 2022 to 2023 – 2025) e Allowed: 20 Minutes simum Marks: 17 HR — — — — — — which you think is correct, r-book. Cutting or filling
1-1	two of more cheres will result	u in zero mark in that	question.	
	A body completes five rethe body is:	evolutions in a circui	iar path having radius 5	cm, the displacement of
	(A) Zero	(B) 10 cm	(C) 0.157 rad	(D) 0.314 rad
2	How many satellites can	track your Switch O	N mobile phone location	n globally:
	(A) 3	(B) 24	. (C) 14	(D) 5
3	Longitudinal waves do n			
4	(A) Refraction	(B) Reflection	(C) Polarization	(D) Diffraction
1	The unit of thermodynam (A) Centigrade			
5		(B) Fahrenheit	(C) Joule	(D) Kelvin
	The dimensions of = $(\frac{1}{v})$	3		
	(A) $[T]^{-1}$ (The speed of sound in air	B) $[L]^{-1}$	(C) $[MT^{-1}]$	(D) $[T^{-1}L]$
6	The speed of sound in air	at 373 K is:		(*) [1 5]
	(A) $332 ms^{-1}$	(B) $300 ms^{-1}$	(C) $291 ms^{-1}$	(D) $393 ms^{-1}$
7	The resultant force of two		N acting on a body in or	posite direction is
		(B) $10\sqrt{34}$ N	(C) 50 N	(D) 20 N
8	When the bob of simple p			(D) 2014
	2.12	(B) P.E and K.E	(C) P.E	(D) DE and E
9	At constant temperature, t			(D) P.E or K.E
		(B) Straight line	p	
10	All the food we eat in one	day has about the sa	(C) Parabola	(D) Ellipse
	petrol energy = $5 \times 10^7 \text{ J}$):			
	$(A) 5 \times 10^7 J \tag{F}$	3) 0.33 J	(C) $10 \times 10^7 \text{J}$	(D) $1.66 \times 10^7 \text{ J}$
11	The diameter of the milky	way is of the order of	of:	(2) 1.00 × 10 3
		$3) 10^{10} m$	(C) $10^3 m$	(D) $10^{40}m$
12	The angular speed of hour	's hand of mechanica	al watch at 2 o'clock is:	
	3	3) $2\pi \operatorname{rad/hour}$	(C) $\frac{\pi}{6}$ rad/hour	(D) 4π rad/hour
13	The time of flight of project	ile is maximum when	it is projected at an angle	e of:
		B) 90°	(C) 76°	(D) 0°
14	A two meter high tank is fu efflux of water (If $g = 10$ r	all of water. A hole a ms^{-2}):	appears at its middle. W	hat is the speed of
	(A) $4.47 ms^{-1}$ (F	3) $4.32 ms^{-1}$	(C) $10.0 ms^{-1}$	(D) $20.0 ms^{-1}$
15	Name the quantity which is	vector:		
	(A) Density (B) Power	(C) Impulse	(D) Charge
16	Twenty waves passes throu	gh the medium in on		
	wave is:			, , , , , , , , , , , , , , , , , , , ,
		3) 20 Hz	(C) 50 Hz	(D) 2 Hz
17	The magnification of a simp	ole microscope when	the final image is forme	ed at infinity:
	(A) $\frac{d}{}$	B) $1 + \frac{d}{}$	(C) $f + f$	(D) f_o

rHY	No (To be fi SICS 224-1 ^s ER – I (Essay Type)	lled in by the candidate) (Academic Annual-(INTER PART – I) GROUP – II	Time Allowed: 2.40 ho Maximum Marks: 68	
		SECTION – I	LHR-2-24	
2. W	rite short answers to any EI			16
(i)	What are two major types of	errors, explain them with example	s?	
(ii)	Give any two rules for signif	ficant figures.		
(iii)	Find the dimensions of gravi	tational constant G in the formula	$F = G \frac{m_1 m_2}{r^2}$	
(iv)		ing experiment of 30 vibrations con	<i>I</i> *	
(v)	Under what circumstances w	ould a vector have components that	are equal in magnitude?	
(vi)	How would you prove equili	brium of coplanar forces?		
(vii)	Analyse the net increase in the are changed from 0° to 60° .	ne value of vector product when any	gle between two vectors	
(viii)	Why do we wear seat belts? Use an equation to support your answer.			
(ix)	Mention the points in the path of a projectile for minimum and maximum speed.			
(x)	An object is thrown vertically upward, discuss the sign of acceleration due to gravity, relative to velocity, while the object is in air.			
(xi)	How pollution can be reduced your answer.	d? Use mass transportation and end	rgy methods to support	
(xii)	A girl drops a cup from a cer changes are involved?	tain height, which breaks into piece	s. What energy	
3. W	rite short answers to any EIG	GHT (8) questions :		16
(i)	Why mud flies off the tyre of	a moving bicycle, in what direction	n does it fly?	
(ii)	What are the artificial satellit	es?		
(iii)	Show that orbital angular mo	mentum $L_o = mvr$		
(iv)	Differentiate between tangent	ial and angular velocity, how both	are related to each other?	
(v)	What do you understand about	at the term viscosity?		
(vi)	How do you describe the beha	aviour of an ideal fluid flow?		
(vii)	On what factors does frequence	ey of a simple pendulum depends?		
(viii)	If a mass-spring system vibra conclude about total energy?	tes, during vibration if potential en	ergy increases what do you	
(ix)	Locate the position of pointer of time period.	'P' along with vibrating point 'N'	at different instant	
		/ \ \ \ \ \ \ \ \		

- (x) Why does sound travel faster in solids than in gases?
- (xi) Describe the phenomenon of sound speed regardless of temperature in air.
- (xii) If stationary waves are set up in an organ pipe with both open ends, how does frequency varies with length of pipe?

(Turn Over)

16

	4. \	Vrite short answers to any SIX (6) questions :	1
	(i) Give two applications of Bragg's equation.	
	(i	i) Under what conditions two or more sources of light behave as coherent sources?	
	(ii		
	(iv	Use Snell's law to calculate critical angle for glass air boundary. Make a diagram to support your answer.	
	(v	Make the ray diagrams of compound microscope and astronomical telescope.	
	(vi		
	(vii		
	(viii		
	(ix	Give an example of a natural process that involves an increase in entropy.	
		SECTION – II	
N	ote	: Attempt any THREE questions.	
5.	(a)	Define projectile motion. Derive relation for: (i) Time of flight (ii) Range (iii) Maximum height	5
		Find the angle between two forces of equal magnitude when the magnitude of their resultant is also equal to the magnitude of either of these forces.	3
6.	(a)	Discuss stationary waves in an air column. Also discuss different modes of vibrations in an open organ pipe.	5
	(b)	How large a force is required to accelerate an electron ($m = 9.11 \times 10^{-31} kg$) from	
		rest to speed of $2 \times 10^7 ms^{-1}$ through a distance of 5 cm?	3
7.	(a)		5
	(b)	A simple pendulum is 50.0 cm long. What will be its frequency of vibration at	3
		a place where $g = 9.8 ms^{-2}$?	3
8.	(a)	How does the efficiency of a carnot engine is calculated?	5
	(b)	What gauge pressure is required in the city mains for a stream from a fire hose connected to the mains to reach a vertical height of 15.0 m?	3
9.	(a)	What is meant by diffraction of light? Also discuss the diffraction of light through a narrow slit?	5
		A simple astronomical telescope in normal adjustment has an objective of focal length 100 cm and an eye piece of focal length 5.0 cm.	3
		(i) Where is the final image formed? (ii) Calculate the angular magnification.	
		131-224-H-(Feeny Type) 6700	,